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Abstract

One version of the multichannel theory for electron-target scattering basedon the

Schwingervariational principle, the SMC method, requires the introduction of a pro-

jection parameter (K. Takatsukaand V. McKoy, Phys. Rev., A24, 2473 (1981)). The
role of the projection parameter a is investigated and it is shown that the principal-

value operator in the SMC equation is Hermitian regardless of the value of a as long

as it is real and nonzero. In a basis that is properly orthonormalizable, the matrix

representation of this operator is also Hermitian. The use of such basis is consistent

with the Schwinger variational principle because the Lippmann-Schwinger equation

automatically builds in the correct boundary conditions. Otherwise, an auxiliary con-

dition needs to be introduced, and Takatsuka and McKoy's original value of a is one

of the three possible ways to achieve ttermiticity. In all cases but one, a can be un-

coupled from the Hermiticity condition and becomes a free parameter. An equation

for a based on the variational stability of the scattering amplitude is derived; its solu-

tion has an interesting property that the scattering amplitude from a converged SMC

calculation is independent of the choice of a even though the SMC operator itself is

a-dependent. This property provides a sensitive test of the convergence of the calcu-

lation. For a static-exchange calculation, the convergence requirement only depends

on the completeness of the one-electron basis, but for a general multichannel case, the

a-invariance in the scattering amplitude requires both the one-electron basis and the

N+l-electron basis to be complete. The role of a in the SMC equation and the con-

vergence property are illustrated using two examples: e-CO elastic scattering in the

static-exchange approximation, and a two-state treatment of the e-H2 X1E + --* b_ +

excitation.
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I.Introduction

Most of the recent progress in electron-atom and electron-molecule collisions are

based on variationM principles. The Kohn 1-4 (particularly the S-matrix Kohn s'6) vari-

ational principle, the variational R-matrix method, 4'7 and the Schwinger variational

principle 8-10 have all met with considerable success. Among the methods based on

the Schwinger variational principle, the multichannel formulation of Takatsuka an&

-'vlcKoy, 11'12 sometimes referred to as the SMC method, is unique in the sense that

its dynamical equation is derived from a combination of Lippmann-Schwinger and

Schr6dinger equations. In this method, the partitioning of open and closed channel

space is achieved by a projection operator which operates on the target electrons alone.

The open channel contribution is described by a projected Lippmann-Schwinger equa-

tion and the closed channel contribution by the SchrSdinger equation. Takatsuka and

McKoy introduced a paramater 'a' to the projection operator. They argued that the

choice of a is uniquely determined by the requirement that the the principal-value

operator in their equation, represented in a basis which includes non _-function or-

thonormalizable continuum functions, must be Hermitian. Numerical calculations la-26

based on this choice of a are generally in good agreement with experiment and with

calculations using other methods.

Recently we initiated a study of the parameter a, which we call the 'projection

parameter', in the SMC method. We begin with the premise that an optimal choice

of a should provide a stable cross section and then formulate an equation for a based

on the variational stability of the scattering amplitude. Analysis of the solution of this

equation shows that the scattering amplitude deduced from a fully converged solution

of the SMG equation is independent of a even though the SMC operator itself is a-

dependent. This seemingly paradoxical result arises from the fact that the role of

a in the SMC equation is related to how the Lippmann-Schwinger and Schr6dinger

equations are combined. A fully converged solution should satisfy both the Lippmann-

Schwinger and Schrgdinger equations such that the result is independent of how the

SMC operator is partitioned. In this respect, the variational stability of the scattering

amplitude with respect to a furnishes a stringent test for the convergence of an SMC

calculation. We note that in most variational calculations, such as the determination

of scattering wave functions based on the stability of the scattering amplitude or phase

shift, and bound state wave functions based on the stability of the total energy, the
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solutions aregenerally unique. The solution of the a-equation is unusual in this respect

because, for a converged calculation, it provides an infinite (but denumerable) number

of solutions.

While the study of a for fully converged calculations is a purely formal exercise,

for calculations using a finite basis, the present result is very useful in determining

an optimal basis and testing convergence. In this respect, the test of a-invariance

provides a unique window to the quality of the SMC calculations that apparently has

no counterpart in other methods. It also furnishes a 'Litmus' test for pseudo-resonances

because pseudo-resonances are sensitive to the value of a. Finally, for studies using

small to medium size basis sets, the global stability of the scattering cross section with

respect to a may serve to expedite the convergence of the calculation.

In Sec. II, we review the SMC method and the original choice of a by Takat-

suka and McKoy 11'12 based on the Hermiticity requirement of the principal-value SMC

operator. We show that the principal-value SMC operator is Hermitian for arbitrary,

real, and nonzero a. The matrix representation of the principal-value SMC operator

is also Hermitian provided that the basis functions consist of either L 2 functions and

_-function orthonormalizable continuum functions, or purely L 2 functions. However,

if the continuum functions used are not _-function orthonormalizable, Takatsuka and

McKoy's choice of a is one way to ensure Hermiticity. Hermiticity can also be achieved

by two other means: iterating the projected Lippmann-Schwinger equation or enforcing

a matrix element of 13 - /ar to be zero. In Sec. III we discuss the difference between

an N-electron and an N + 1-electron projection operator and how the introduction of

a is related to this difference. Based on the variational principle, an equation for a is

derived in Sec. IV and the nature of its solutions is discussed. In two specific examples,

elastic scattering in the static-exchange approximation and multichannel close-coupllng

calculations, the a-invariance is demonstrated by substituting converged wave functions

from other methods into the SMC equation. Also, for the case of the lowest pole of H-,

we show that the SMC equation reduces to the Schrgdinger equation and the solution

is again independent of a. We then propose a search procedure to locate the region of

a-invariance azld establish a stable solution of the scattering amplitude. Two numerical

examples are presented in Sec. V to illustrate the nature of the a-variation and the

type of insight it can provide. Sec. VI concludes the paper.



II. The projection parameter in the SMC method

The Hamiltonian for the electron + target system is given by

far = IIN + TN+I + V, (1)

where HN is the target Hamiltonian, TN+I is the kinetic energy operator for the con-

tinuum electron and V the interaction potential. In the SMC formulation, a projection

operator P, originally introduced by Takatsuka and McKoy, 11 defines the open-channel

space in terms of the eigenfunctions ¢,_ of the target Hamiltonian,

and

M

P = _ [_m(1,2,...,N)}(_,_(1,2,...,N)[, (2)
m=l

HN]@m) = Eml@m). (3)

The summation in Eq. (2) is over all energetically accessible target states. Notice that P

is an N-electron projection operator, unlike the Feshbach projection operator 2s which

is an N + 1-electron projection operator. In using P to partition tile N+l-electron

space, Takatsuka and McKoy multiply P by a projection parameter a.

• (_+_= _p%+)+ (1- _p)_). (4)

tlere q2(+) is an N+l-electron wave function. At this point the parameter a is arbitrary.

Its variational determination is the subject of the present investigation. The dynamical

equation in the aP-space is obtained from the projected Lippma.nn-Schwinger equation,

_P_+_ = _Ps_+ aa_+)V_+_, (5)

where S,_ is the eigenfunction of the non-interacting Hamiltonian, HN + TN+I. The

projected Green's function, G (+), with outgoing spherical wave boundary conditions,

is defined in the open channel space by,

M

G(+) _ 1 ezp(ik,_lFN+l - FN+I '1)
2,__ I¢.,) I¢N+,- cN+_'1 <_..I. (6)

m=l

The contribution from the complementary space is deduced from the Schr6dinger equa-

tion.

(1 - aP)Hk_) = O. (7)



_r = E-H. (S)

The SMC equation is derived 11 by combining Eqs. (5) and (7) and multiplying by l/a,

A¢+)_) = YRS., (9)

where the SMC operator A (+) with outgoing spherical wave boundary condiions is given

by

1 )A (+) = (PV + VP)- VG(+)V +-[Ia - _(Pf-I + farP) , (I0)

Lima and McKoy 29 have demonstrated that the solution of Eq. (9) provides the com-

plete wave function.

is

Tile Schwinger functional for the scattering amplitude, constructed from Eq. (9)

The principal-value SMC operator, A, is obtained by replacing G(p+) in Eq. (10)

with the projected principai-value Green's function. Similarly, the wave functions in

Eqs. (7), (9), and (11) should be replaced by those using standing wave boundary con-

ditions. The principal-value operator was used in the original derivation of Takatsuka

and McKoy, but most subsequent numerical calculations used A (+).

Takatsuka and McKoy, 11'12 and Lima and McKoy 29 argued that the variational

stability of the Schwinger functional f,,,,, requires the principal-value SMC operator A

to be Hermitian, or equivalently, A (+)t = A (-) While this condition is readily satisfied

for trial functions consisting only of L 2 functions, Takatsuka and McKoy noted that

if the trial functions included (shielded) spherical Bessel and Neumann functions, the

representation of A in this basis is generally non-Hermitian because the Hamiltonian

matrix in non-tIermitian. In this case, the tIermiticity of the A-matrix is retrieved if

the projection parameter is chosen to be

a = N + 1. (12)

Equation (12) guarantees the following relationship to hold for the continuum portion

of the open-channel functions,

O. (13)
a 2
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Since the non-Hermitian part of the A-matrix involving continuum functions is iden-

tically zero, Eq. (12) ensures the Hermiticity of A in a basis which includes spherical

Bessel and Neumann (or Hankel) functions.

Two aspects of Eq. (12) deserve further consideration. We note that Eq. (13) is

also satisfied if

<P_mlfllP_.) =0. (14)

Thus even if the continuum functions in the basis results in a non-Hermitian H-matrix,

the Hermiticity of A can be achieved using conditions other than Eq. (12). This point

will be further considered in Sec. IV.

Another aspect of Takatsuka and McKoy's result is that, if the Hermiticity of A

is used to determine a, the choice of a is basis set dependent and Eq. (12) is nec-

essary if the basis set employed gives a non-Hermitian H-matrix. We note that the

Hamiltonian operator, corresponding to a physical observable, must be Hermitian. 3°

Furthermore, the Hermiticity of an operator depends only on the fact that it represents

an observable, but not on its eigenvalue being in the discrete or continuum part of the

spectrum. However, the continuum eigenfunction of a Hermitian operator must be

_-function orthonormalizable. 31 In order to retain the Hermiticity in the matrix rep-

resentation of H, the basis set used needs to be orthonormalizable either in terms of

Kronecker 6's (L 2 functions) or Dirac 6-functions (continuum functions). However, in

scattering calculations using Kohn or R-matrix methods, the phase shifts or T-matrices

are deduced from the wavefunction at the asymptotic boundary. It is necessary to in-

clude both (shielded) spherical Bessel and Neumann functions in the trial basis. Such

basis sets are not 6-function orthonormalizable because the overlap integral between

the (shielded) spherical Bessel and Neumann functions are not 6-function representable.

Consequently, the H-matrix in a basis containing such functions is non-Hermitian. Thia

is a well recognized result from Kohn calculations. As noted earlier, the A-matrix in

this basis is also non-Hermitian.

Through the use of Green's function, the solution of the Lippman-Schwinger equa-

tion automatically has the correct boundary condition. Thus the basis for the trial

functions in a Schwinger calculation need not contain both spherical Bessel and Neu-

mann functions. It can be a pure L 2 basis or a L 2 basis plus 6-function orthonormal-

izable continuum functions. In this representation, the H-matrix is Hermitian. Even
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if the initial trial basisis not properly orthonormalizable, Appendix A showsthat the

wave function from the next iteration in the Lippmann-Schwinger equation is again

6-function orthonormalizable. Thus the iterative procedure can be used to ensure the

Hermiticity property.

It remains to be shown that the operator A is Hermitian and the A-matrix, rep-

resented by a properly orthonormalizable basis, is also Hermitian. We recognize that

f:[, V, VGpV, and P are all Hermitian operators. On the other hand, the product of

two Hermitian operators need not be Hermitian. For example, P/?/ is not Hermitian

because the operator P, defined in the N-electron space, and i2t, defined in the N + 1-

electron space, do not commute. 32 Thus the Hermiticity of A depends on the proof that

both PIt +/)'P and PV + VP are Hermitian. Consider two arbitrary N + 1-electron

functions f and g, which can be properly orthonormMized.

(flPHIg) = f d¢N+l(/lCm)N( mlHIg)N.
rrL

The subscript N under the bra-ket sign denotes integration over the N-electron space.

m

t

= </l qPIg/.

It is readily seen that

(glPAr+/ PIf> t = <flPAr + ArPIg). (16)

Thus P/:/+ HP is Hermitian. The proof for PV + VP is similar. We conclude that

A is a Hermitian operator independent of the choice of a as long as it is real. The A-

matrix is also Hermitian in a basis which is &function orthonormalizable. Under such

circumstances, Eq. (12) is not necessary to maintain the Hermiticity of the A-matrix.

The present result demonstrates that, either by using a basis containing L 2 func-

tions plus 6-function orthonormalizable continuum functions or purely L 2 functions,

or by using a iterative procedure to insure the orthonormalizability of the wave func-

tion, the Hermiticity of A is automatically satisfied. Then the Hermiticity require-

ment is insufficient to determine the parameter a, and a becomes a free parameter

which can be chosen variationally so as to optimize the scattering calculation. This
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is the approach used in the present study. Alternatively, one may include both the

regular and irregular free-particle functions in tile basis. Without iterating the pro-
jected Lippmann-Schwingerequation, this results in a non-Hermitian A-matrix. Either

Eq. (12) or Eq. (14) can be used guarantee its tIermiticity. Finally, as in tile complex

Kohn approach, one may allow the A-matrix to be non-Hermitian. This will then allow

the parameter a to be varied.

The use of a pure L 2 basis requires further consideration. In the conventional form

of the Schwinger variational principle, the Schwinger functional is given by

1 {(s.,Ifm,_-- 271-

All matrix elements in the above expression involve the operator V. If V is short range,

then the long tail in the continuum portion of the trial function does not contribute to

finn and it is justified to use a pure L 2 basis in this type of variational principle. The

Schwinger functional in the SMC method, Eq. (11), includes matrix elements of the

kinetic energy operator. Takatsuka and McKoy 11 pointed out that, by setting a=N + 1,

the open channel matrix elements of the kinetic energy operator do not contribute to

fm,_ (see Eq. (13)), and a pure L z basis again can be employed. In the present approach,

a is treated as a variational quantity and gq. (13) no longer holds. However, Appendix

B shows that, for problems involving short range potentials, tile matrix element in

finn where the kinetic energy operator operates on purely continuum functions exactly

cancels the difference between the total energy and the target energy.. The remaining

matrix elements of the kinetic energy operator always include a bound function in

the integrand and the continuum character of the trial basis is again unimportant.

Consequently, even if a _ N + 1 it is justified to use a pure L 2 basis for this type of

variational principle.



III. N-electron and N+l-electron projection operators

Before deriving a variational equation for a, it is worthwhile to consider first the

difference bewteen an N-electron and N + 1-electron projection operator. The in-

troduction of a originates from this difference. The Feshbach projection operator, 2s

which operates on the total S+l-electron system, is defined without any extraneous

parameters.

PN+x = _-_ [_2m(1,2,...,N,N + 1)}(_m(1,2,...,N,N + 1)1 (17)

Here m sums over the open channel functions. If ql is an open channel function,

PN+l ffgi = qll. (18)

On the other hand, when the N-electron operator P, defined in Eq. (2), operates on an

N+l-electron wave function, the antisymmetric nature of fermion wave functions causes

the result to be more complicated than Eq. (18). Consider the simplest case when the

target wave function ¢i is expressible in terms of a closeci shell, single deterlninantal

wave function,

¢_(1,2,...,N) = .A { ¢aa(1)¢lfl(2)...¢N/2a(N --1)¢N/2fl(N) ). (19)

Here a and fl denote spin functions. If the wave function of the continuum electron,

fi(N + 1), is orthogonal to all the target orbitals, then the Sz= 1/2 component of _i

becomes

qI(1,2,...,N,N + I)= A {¢la(1)¢lfl(2)...¢N/2fl(N)fia(N + l))

We have

P_¢(1,2,...,N,N + I)=

, (2o)

1
__@i(1,2,...,N).ficx(N + 1), (21)

v/ +l

and
1

(%IEPI_') -- N + 1 (%IHI_')" (22)

A comparison of Eqs. (18) and (21) clearly shows the origin of the projection parameter.

When an N-electron projection operator is applied to an N+l-electron wave function,
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a projection parameter needs to be introduced to account for the difference between N-

electron and N+l-electron antisymmetrization. Using Eq. (22) it is straightforward to

derive the result of Takatsuka and McKoy la for elastic scattering in the static-exchange

appro_mation using a closed shell SCF target function or an open shell target function

with a simple spin coupfing scheme.

Eq. (21) is not applicable when the orthogonality constr_nt between the continuum

electron wave function and the target wave function is relaxed, and/or when the target

is described by more sophisticated wave functions. Consider the simple case of XaEg+
3 +

--, b E_, excitation of H2 by electron impact. Let the wave function for tile X1 E_+ state

be represented by

_, = A{1crga(1)lg_/3(2)} (23a)

and the three spin components of the b 3_]+ state by

@bl = A{l_gc_(1)l_u(2)}

A{lob(1)lcr,,(2)-_2 (a(1)/3(2) +/3(1)a(2)) }
_b0

@b-1 = A{1%/3(I)I_.#(2)}

(23b)

(23c)

(23d)

form

and

It is well established that in calculating this transition, correlation terms of the

• _ = A{1%c_(I)I_c_(2)I_#(3)}, (24a)

_Ib = .A{ I crga(1)l_gl3( 2 ) I cr_c_(3 )} , (24b)

should be included. These axe usually called 'penetration' or 'recorrelation terms' in

other methods because they relax the enforced orthogonality between the continuum

and target functions. Let the projection operator P be generated from the four target

functions in Eqs. (23a-d). We then have

P_i'a = -_I @bi(l,2)lo'_,fl(3)- ---_6@bo(l, 2)Io-_,0_(3). (25)

This simple example illustrates the fact that, when the SMC method is applied to prob-

lems other than static-exchange scattering with simple target functions, the rationale

of setting a = N+I, based on Eq. (21), is not valid.
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While the useof an N-electron projection operator leads to the introduction of a

projection parameter, it does have significant advantages in retaining a simple repre-

sentation of the projected Green's function, Eq. (6). Note that the use of the Feshbach

operator results in a much more complicated expression for the projected Green's func-

tion because of the nonorthogonMity between the continuum and target functions.

Furthermore, an N-electron projection operator obviates the need for orthogonality

constraints between the continuum and target functions. The method has built-in

nonorthogonality because the plane waves in the homogeneous solution S,_ and Green's

function G(p+) are not orthogonMized to the target functions. Thus q_ and qb in

Eqs. (24a,b) act as correlation terms in the SMC method whereas in other methods

they play dual roles of correlation and penetration functions. In addition, the com-

plementaxy space in the SMC method is directly constructed from 1-aP. In contrast,

some applications of the optical potential method construct the complementary space

separately from the P-space. These advantages of the SMC method cannot be over

emphasized.
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IV. Variational determination of a

Sec. II shows that, by choosing a properly orthonormalizable basis, or by iterating

the projected Lippmann-Schwinger equation, a becomes a free parameter. An optimal

choice of a should then be derived variationally. To demonstrate that a indeed acts as

a free parameter, consider using as a trim function the converged static-exchange wave

function obtained using another method.

and

_SE = Ae_o(1,...,N)fsE(N + 1),

1 2

(hsE - _ )j% = O,

('I's_l/:/l_s_} = 0.

Since q2SE contains only open channel functions,

<¢sEIP-i-II_sE) = (_ SEI-f-IPIWsE) = O.

We have

(26)

(27a)

(27b)

(27c)

1
(_sEIAI_sE) = (_SEI-_(PV + VP)- VGpVIqJSE). (28)

The resulting A-matrix is a-independent. Also, Eqs. (27b,c) are equivalent to Eq. (14)

and the Hermitian representation of A is guaranteed.

For the second example, consider the trial function obtained from a close coupling

calculation (which may include closed channel functions),

<_ccl#l_cc> = o. (29)

1 1 ^

<¢cclAl¢cc> = (eccls(PV + VP) - VGpV - -_(PH + I_P)l'.#cc >. (30)

The a-dependence disappears. Since Eq. (14) may not be satisfied, whether A in this

representation is Hermitian or not depends on the original basis used for _2cc.

As a third examples, consider calculation of the lowest pole of H-. In this case

the open channel space is null.

P=O.

11



The SMC equation in Eq. (9) is reduced to

^

-H@,, : O.

Here k is just overall multiplicative factor which can be discarded.
a

the SchrSdinger equation, independent of a.

We then retrieve

The above examples demonstrate that the choice a = N + 1 is not unique. Except

in the bound state case where a drops out completely, a variational determination of a

is generally preferable. Here we consider the simultaneous optimizations of a together

with the trial scattering functions. Let @_) and qs(-) be expanded in a set of trial

functions f.,

I%+>)= _ b,(f.)lf_), (31)
r

and

(,I,_-)[ = _ c,(/_,_)(f,t.
$

The Schwinger functional is now written as

(32)

l [_ b.(&_Ivlf,.)f_-- 2r + _ c,(LlVl&)- _ _-_b,.c,(LIA(+)lf,)].
$ r $

(33)

The requirement that f._,_ be stationary with respect to first order variations in b., c.,

and a, Ofm,_/Ob,. = O, Ofm,_/Oc, = O, Ofm,_/Oa = O, gives the following relationships,

(S_IVlL) - _ ¢,(f, IA(+)IL) = o,
$

(34)

and

The solutions for b,., c, are 33

(f, IVl&,) - _ b,.(LIA(+)IS,) = o, (35)
r"

__ _j-_b,c,(f, IHIf,.) =o. (36)
'p $

b,.= __, D,.,(LIVI&), (37a)

12
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with

c, = (37b)

(D-l), ", = (f,-[A(+)].f,) • (38)

Notice that in the expression for (D-a)_s, the parameter a appearing in A (+) is still

undetermined. Substitute Eqs. (37a,b) into Eq. (36), we get

_ _ _-_(S,_IVIft>D,(/_IHIf,.>D,.v(f¢,tVIS,-,) = o. (39)
r j t t'

Eq. (39) is an algebraic equation for a. Using the value of a determined from Eq. (39)

to evaluate D, we obtain a variationally stable expression for fm,_,

1 _-_(SmlY[f,.)D,.,(f, lVlS,_). (40)f"'_ - 21r
r$

This expression of fm,_ is identical with those obained by Takatsuka and McKoy, 11,x2

except for the value of a used.

Equation (39) provides variationally optimal values of a. It is a high-order algebraic

equation, the order being proportional to the number of trial functions used. A number

of useful properties of the solution can be deduced by studying the structure of Eq. (39):

(1) If the trial functions are the variational solutions of the SchrSdinger equation,

(f, ILrlf,.)=0,

then Eq. (39) will be satisfied independent of the choice of a. This is a physically

intuitive result and has already been illustrated by the first two examples cited in the

beginning of this section.

(2) The solution depends on the initial and final channels under study. Thus in a

multichannel calculation, different a's will be used for elastic, superelastic, and inelastic

scattering.

(3) For a given transition, the value of a depends on the trial functions used.

(4) If a complete basis is used, the result should be independent of the choice of a.

This comes from property (1) and the invariance of Eq. (39) to a unitary transformation.
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It is important to note that the term basis denotes both the basis set used to expand

the one-electron functions, e.g., a Gaussian basis set, and the N+l-electron basis that

describes the multichannel nature of the wave function, i.e., the open and closed channel

functions. This property is found to be very useful in testing the completeness of the

basis used.

(5) The solution of Eq. (39) depends on both the energy and direction of the inci-

dent and scattered electrons. However, if we consider the following operator equation,

= o,
r s t I _

(41)

the a:s which satisfy Eq. (41) will automatically satisfy Eq. (39). They represent

a subset of the solutions of Eq. (39) which are independent of the direction of the

incident and scattered electrons. Also, the a's determined in this manner satisfy both

Ofm,_/Oa = 0 and Oo'._,,/Oa = 0, with o',,_ denoting the integral cross section.

In general, the dimensionality of Eqs. (39) and (41) makes a direct solution difficult

in practical problems. Alternatively, a search procedure can be used. Starting with

a trial value of a, the matrix elements of A (+) can be determined and the scattering

amplitude fm,_ calculated using Eq. (40). The parameter a is then varied to search

for optimal values. Also, we combine the search for the stability of f,_,_ with a test

of the adequacy of the basis (property 4) by looking for solutions where fm,_ or ¢,,,,_

is invariant to a. Numerical examples using this technique are presented in the next

section.
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V. Numerical Examples

As an illustration, we studied e-CO elastic scattering in the static-exchange ap-

proximation. The calculation uses an uncontracted {ClOs6pld]OlOs6pld[CM2s3pld}

basis with CM denoting the center of mass. The C and O basis start with the 9s5p

basis of Huzinaga 34 supplemented with one diffuse s and one diffuse p functions, with

exponents 0.04736 and 0.03654 for C and 0.08619 and 0.06368 for O. The d exponents

for C and 0 are the recommended values of Dunning. 3s The exponents for the center

of mass functions are selected from the table of Nestman and Peyerimhof. 36 They are

0.032426 and 0.009211 for 2, 0.041975, 0.01997, and 0.009467 for p, and 0.04349 for d.

.-kll calculations were carried out at the internuclear distance of 2.132 ao.

Sec. IV shows that the SMC static-exchange result should be independent of a if

the one-electron basis has converged. Fig. la and b present the integral cross sections

at 3.75 eV incident energy as a function of a, for a = 10 - 20 in steps of 0.1. (The value

of a is 15 if it is set to N + 1). Of 100 points calculated, 81 fall within 5% of each other,

as depicted in Fig. la. Fig. lb shows the full calculation where a number of significant

oscillations in the cross sections are shown. These instabilities are a direct consequence

of the incompleteness of the basis used. The result of the a variation means that the

basis set is probably adequate if 95% accuracy in the cross sectiorl is acceptable.

The source of the sharp peaks and dips in Fig. lb is analogous to the pseudo-

resonances in the Schwinger method reported by Apagyi et al.a7 and analyzed by

Weatherford et al.3s and by Winstead and McKoy. 39 When the basis for expanding

the wave function is complete, the matrices of/_r, _p/_r and/2/p all have zero eigenval-

ues and the eigenvalues of A (+) in this representation do not go to zero unless a real

resonance exists. On the other hand, the matrix of f/ represented by an incomplete

basis generally does not have zero eigenvalues. Thus a particular choice of a may cause

a near cancelation between ft/a and the remaining terms in A (+) such that A (+) has an

eigenvalue close to zero. Similarly, a dip indicates a corresponding maximum eigenvalue

of A (+). Notice the sharpness of these structures, a characteristic of pseudo-resonances.

Since O0"rnr_/Oa = 0 is alSO satisfied at these structures, we consider a choice of a based

on the flatness of the cross section vs a curve to be superior to the simple condition

&r,_,,lOa = O.

15
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As a second example, we studied the effect of the variation of a on the e-H2,

b _u excitation cross sections using a two-state approximation. This is a wellX IE+ -, 3 +

studied transition; calculations using the SMC, ls'2° R-matrix, 4°'41 linear MgebrMc, 42,*_

and S-matrix Kohn s'*4 methods have been reported. These calculations showed that

the correlation/penetration terms such as those given in Eqs. 24a,b) are important in

describing the scattering process.

Two Gaussian basis sets were used. The 64-basis, consisting of 64 uncontracted

Gaussian functions, is a {H6s6p[CM4s4p} set that was used in the original calculations

of Lima et al ls'2° and the cross sections are in good agreement with experiment. 4s-47

The 70-basis, composed of 70 uncontracted Oaussians, is a {H8s7plCM3s3p} set which

employs the s and p functions from van Duijneveldt's 4s 8s6p4d hydrogen basis, sup-

plemented with one p function (exponent 0.03125) at the nuclear centers, and three

s functions (exponents 0.082, 0.021, 0.0052) and three p functions (exponents 0.114,

0.0226, 0.0045) at the center of mass. The hydrogen basis of van Duijneveldt, in the

form of atomic natural orbitals, has been used frequently in high quality quantum

chemical calculations of hydrides and their ions. 4° Based on previous experience, we

expect the 70-basis to be superior to the 64-basis. The present study employs the same

type of target functions as previous SMC calculations on this transition, ls'2° i.e., an

SCF function for the ground state and an IVO function s° for the b state, so that the

a-dependence of the cross section would not be attributed to the difference in the targ_

wave functions. All calculations were carried out at a bond length of 1.4 ao using the

AMES SMC code. We determined the integral cross sections as a function of both a

and the electron energy. The range of a used is 2.0 - 4.0 in steps of 0.05. Also note that

the results of the 64-basis calculations are slightly different from Lima et al. 2° because

a better representation of the VG(+)V term is used.

Analogous to the CO static-exchange result, the e - H2 elastic cross sections versus

a curve also show regions of stability, with sharp structures between stable regions. Figs.

2a and 2b depict the elastic cross sections at 13 eV, calculated using the 70-basis and

64-basis, respectively. Only the data points within 10% of each other are depicted. For

the 70-basis, 72.5% of the data points satisfy this criterion, versus 45% for the 64-basis.

From this point of view, the 70-basis is superior, even though the cross section averaged

over the converged data points, shown as a dashed line in the figures, is in agreement

with each other, 23.4 au for the 70-basis and 22.8 au for the 64-basis. Even for the

16
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70-basis, the convergence is inferior to the CO result. We consider this a consequence of

the inadequacy of the N + 1-electron basis used in the two-channel calculation, and not

due to an inferior one-electron basis. Note that the N + 1-electron basis (multichannel)

does not play a role in the static-exchange approximation used in the CO calculation.

Figures 3a and 3b depict the inelastic cross sections from the 70-basis and 64-

basis calculations where the data points are within 10% of each other. Among the

calculated values, 45% and 50%, respectively, fall in this range. Thus for the 70-basis

the convergence of the inelastic cross sections is significantly inferior to the elastic case

whereas the quality of the 64-basis cross sections remain roughly the same. The 70-basis

result serves as an indication that an optimal basis for elastic and inelastic calculations

may be different.

Note that for the 64-basis, the regions of stability for both elastic and inelastic cross

sections include the point at a=3.0, corresponding to Takatsuka and McKoy's choice of

N + 1, whereas the cross section at this a is not in the set of converged points for the

70-basis. Fig. 4 compares the inelastic cross section as a function of electron energy, for

the 64-basis and 70-basis at a = 3.0, and the 70-basis cross sections determined using

the average of the converged cross sections at each energy. Experimental data 4s-4_" for

this transition are also included for comparison. Note that the 64-basis cross sections

at a=3.0 and the average cross section from the 70-basis calculations are in agreement

with experiment and with each other to within the estimated errors, but the 70-basis

cross section curve at a=3.0 differs significantly in both shape and magnitude from

the other two curves and from experiment. In particular, the experimental data show

no evidence of a dip around 16 eV. If a = N + 1 is considered a unique choice, we

have the paradoxical result that a larger and, generally considered better, basis gives

cross sections that disagree not only with the previous SMC results, but also with

calculations using other methods and with experiment. However, if we accept a as

a variational parameter and the optimal cross section using a-stability criteria, then

the 70-basis results agree with the generally accepted values. This numerical example

demonstrates the importance of a-variation.

All previous reported SMC cross sections la-26 were calculated using a = N+I.

From our point of view, this is just one of many possible values of a. In general, a

calculation of the cross section vs a curve is recommended since it provides both a con-

17



vergencetest and a ready checkfor pseudo-resonances.Furthermore, the requirement

that the cross section curve be flat with respect to a provides a variationally more

meaningful crosssection than calculations using one single value of a.

18



VI. Conclusions

This study considersthe role of the projection parameter in the SMC method and

developsa variational equation for it. While the multiple solutions in the variational

equation may at first appearto bea disadvantage,it actually providesa sensitivetest of

the convergencewhen wecouple the variational solution of a with the requirement that,

for a fully convergedcalculation, the crosssection is invariant with a. The convergence

requirement applies both to the one-electron and N+l-electron basis. Such a test

is apparently unique to the SMC method. It is also shown that calculations using an

incomplete basis, as is the case in all practical calculations, may find pseudo-resonances

when the choice of a causes the SMC operator to have a near zero eigenvalue. Thus it

is essential to test the stability of the cross sections with the a-variation. Studies on the

invariance of the cross section with a using more sophisticated target wave functions

and more extensive multichannel treatments are under way.
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Appendix A. Orthonormalizabilty of the iterative solutions of

the projected Lippmann-Schwingerequation

Consider the projected Lippmann-Schwingerequation

pg(+) = _o(+)+ G(p+)vgl +), (1-1)

where _(+) is the projected homogeneous solution and satisfies the &function orthonor-

malization condition,

<_+)l_+))= 6(;, - _). (A- 2)

In Eq. (A-l), 91 +) is the wave function represented in the initial trial basis and 9 (+) is

the wave function after one iteration of the projected Lippmann-Schwinger equation.

The initial trial basis may be composed of purely L 2 functions or L 2 plus continuum

functions. If continuum functions are included in the basis, &function orthnormaliz-

ability is not required. Consider the overlap integral

<pg_+)lpg_+)/ , (+), (+),

.... (+)la(;)(E2)v_(+)_÷{G(p+)(E1)Vm(+)I_o_+))-,,+ (O(p+)(E,)vwl, -=, ,.

Direct integration gives

(+),G(+),E _V9(+)__o_ I p t, 21 _t ! = lim_--*o

(O_+) (El,,,.--(+), (+),)v'zlt IT2 } = lim6--.o

and

E2 - E1 + i5 _=_ /"

1 (+) (+)

E, - E= + {6<9'* lVl_o= >.

<a(;)(_)v<,+)ICT(E,)VgL+)>

(A-3)

(A-4)

= lima-oEa - E=I+2i5[(G(P+)(Ex)Vgx6+)IVIg_+*))-(9[+*)IVIG(P+:'E=)V%t(+))]"

(a-6)
Combining Eqs. (A-2), (A-4), (A-5), and (A-6) and taking the limit 5 =0, we find

1 r, (+) (+) (+) (+)
= - - ('_u IVlP% )] (A 7)(P9_+)]P9_ +)) 5(/_1 f:2)+ E2 E, L_P91 IVI%, )- . -

The presence of the interaction potential V, which vanishes at least like r -I as r --+ oo,

guarantees that the last two matrix elements in Eq. (A-7) do not diverge for neutral,

20



bound target functions even if e(+) and _(+)_1_ _2_ are representedin a basis including
continuum functions which are not 6-function normalizable. Eq. (A-7) means that
P_+), and hence ff2_+), are G-function orthonormalizable. Thus the iterative solution

of the projected Lippmann-Schwinger equation is G-function orthonormalizable even if

the initial trial function is not.
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1'-(-1) P3 d_'ld_o.d_'3d_'_D_(r,r2ra,rlr2r;)l_.l _ F2[s_.,(kmr'3)Y_,.,(÷'3)

xsx. (knra)Y_,._,b(÷a ) ( B - 4)

The first term on the right hand side of Eq. (B-4) vanishes due to Eq. (B-2). The

second term involves the short range potential V which does not weigh the long range

part of s_., and sx. The last three terms on the rhs of Eq. (B-4) comes from the non-

orthogonMity between the target functions and the spherical Bessel functions. The

transition one-, two- and three-particle density of target functions _,_ and 'I_,_ are

denoted by. _,,,_,r_(l)_,,_,_,/o(2)and D_)_, P1, P2 and P3 represent the number of permutation

operations, and U(P') the nuclear attraction potential. Note that all target transition

density functions are short-range. Thus the last three integrals in Eq. (B-4) involving

short-range integrands in all coordinates. The long tail of the continuum functions ,x=

and .sx_ again does not contribute to these matrix elements. It is straaghtforwad to

show that similar conclusions apply to matrix elements of Pt/ and lIP.

In view of the above result, the matrix elements in the Schwinger functional in

Eq. (11) is insensitive to tile continuum nature of the trim function even wilen a :# N+I

and Eq. (13) does not apply. This justifies the use of pure L 2 basis in the variational

principle developed in this paper.

PI_i_IINNG PAGE BLANK NOT FLMIrD
23



References

1. L. Hulth6n, Kgl. Fysiograf. S/ilbkap. Lund. FrSh. 14, 257 (1944).

2. W. Kohn, Phys. Key. 74, 1763(1958).

3. S. I. Rubinow, Phys. Rev. 96,218 (1954).

4. R. K. Nesbet, Variational Methoda in Electron - Atom Scattering, (Plenum,

New York, 1980).

5. W. H. Miller and B. M. D. D. Jansen op de Haar, J. Chem. Phys. 86, 6213 (1987).

-. ¢

6. B. I. Schneider and T. N. Rescigno, Phys. Rev. A37, 3749 (1988).

7. P. G. Burke and W. D. Robb, Adv. Atom. Mol. Phys. 11,144 (1975).

8. J. Schwinger, Phys. Rev. 72, 742 (1947).

9. R. G. Newton, Scattering Theory of Wave_ antiParticles, 2nd Edition,

(Springer-Verlag, New York, 1982).

10. D. K. Watson, Adv. Atom. Mol. Phys. 25, 221 (1988).

11. K. Takatsuka and V. McKoy, Phys. Key. A24, 2473 (1981).

12. K. Takatsuka and V. McKoy, Phys. tZev. A30, 1734 (1984).

13. T. L. Gibson, M. A. P. Lima, K. Takatsuka, and V. McKoy, Phys. Rev. A30, 3005

(1984).

14. M. A. P. Lima, T. L. Gibson, W. M. Huo, and V. McKoy, Phys. Rev., A32, 2696

(1985).

15. M. A. P. Lima, T. L. Gibson, W. M. Huo, and V. McKoy, J. Phys., B18, L865

(1985).

16. L. M. Brescansin, M. A. P. Lima, T. L. Gibson, V. McKoy, and W. M. Huo, J.

Chem. Phys., 85, 1854 (1986).

24



17. W. M. Huo, T. L. Gibson, M. A. P. Lima, and V. McKoy, Phys. l_ev., A36, 1632
(1987).

18. W. M. Huo, M. A. P. Lima, T. L. Gibson, and V. McKoy, Phys. Rev., A36, 1642
(1987).

19. T. L. Gibson, M. A. P. Lima, V. McKoy, and W. M. Huo, Phys. Rev., A35, 2473
(1987).

20. M. A. P. Lima, T. L. Gibson, V. McKoy, and W. M. guo, Phys. Rev. A38, 4527
(1988).

21. W. M. Huo, Phys. Rev., A38, 3303(1988).

22. H. P. Pritchard, M. A. P. Lima, and V. McKoy, Phys. Rev. A39, 2392 (1989).

23. M. A. P. Lima, K. Watari, and V. McKoy, Phys. Rev. A39, 4312 (1989).

24. C. A. Weatherford and W. M. Huo, Phys. Rev., A41, 186 (1990).

25. W. M. Huo, Nonequilibrium Processes in Partially IonizedGase_, M. Capitelli

and J. N. Bardsley, editors, NATO Advanced Study Institute Series, p. 341 Plenum

(1990).

26. C. Winstead and V. McKoy, Phys. Rev. A4__22,5357 (1990).

27. C. Winstead, P. G. Hipes, M. A. P. Lima, and V. McKoF, J. Chem. Phys. 94,

5455 (1991).

28. H. Feshbach Ann. Phys. 19, 287 (1962).

29. M. A. P. Lima and V. McKoy 3 Phys. Rev. A 38, 501 (1988).

30. C. J. Joacha_n, Quantum Collision Theory North Holland, Amsterdam (1983), p.

660.

31. A. Messiah, QuantumMechanic_ Vol. I, John Wiley, New York (1961), Chapter

VII, Sec. 9. See in particular the discussions in pp. 185-186.

25



49. J. AlmlSf and P. R. Taylor, Adv. Quantum Chem. (in press).

50. W. J. Hunt and W. A. Goddaxd III, Chem. Phys. Left. 3, 414 (1969).

27

PIVI_,,EO_G PAG_ L_L.ANK NOT F_MLb



Figure Captions

Fig. la e-CO elastic scattering cross section in the static-exchange approximation versus

a at 3.75 eV electron energy. This figure depicts all data points where the cross

sections are within 5% of each other.

Fig. lb Same as Fig. la except all data points are included.

Fig. 2a e-H2 elastic scattering cross sections at 13 eV as a function of a. This figure depicts

all data points from the 70-basis calculations where the cross sections are within

10% of each other. The dashed line denotes the average cross section over the data

points.

trig. 2b Same as Fig. 2a for cross sections determined using the 64-basis.

Fig. 3a e-H2 XIE + _ baP, + excitation cross sections at 13 eV as a function of a. This

figure depicts all data points from the 70-basis calculations where the cross sections

are within 10% of each other. The dashed line denotes the average cross section

over the data points.

Fig. 3b Same as Fig. 3a for cross sections determined using the 64-basis.

Fig. 4 e-H2 X 1E + _ b 3 E + excitation cross sections as a function of electron energy. The

experimental data are from Hall and Andric (Ref. 45), o; Nishimura and Danjo

(Ref. 46), o; and Khakoo et al. (Ref. 47), £x.
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SCHRODINGER EQUATION MESH REQUIREMENTS

IN THE FINITE DIFFERENCE DISCRETIZATION

FOR NON-SPHERICAL POTENTIALS
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ABSTRACT

The Schrgdinger equation for the scattering of an electron by a hydrogen molecule

is solved by converting it to a block-tri-diagonal matrix equation. The discrete mesh of

points in the angular variable must be made more dense as the potential energy deviates

from spherical symmetry to maintain a desirable level of accuracy. The present paper

investigates the nature of this dependence, and the relative effect of third-order and fifth-

order differentiation rules. It is found that the existence of one large element in the

K-matrix sets a lower bound on the accuracy of all elements. This bound, and therefore

the overall accuracy of the numerical approximation, can be substantially improved by the
use of the higher-order rules.
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1. Introduction

Traditional electron scattering theory concerns the results of collisions between an electron

and a target under the assumption that their interaction depends only on their separation, and is

independent of their angular orientation. When the target is an atom, this assumption is justified,

but when the target atoms are bound into molecules, the great simplifications afforded by the

conservation of angular momentum are no longer available. A fiumefical analysis must therefore

be introduced at an earlier stage in the solution of the problem.

The K-matrix is a concise and computationally simple means of presenting the results of a

scattering calculation done by the method of partial differential equations. This work will

investigate the relationship between the mesh size required in a f'mite-difference approximation to

the K-matrix and the deviation of the scattering potential from spherical symmetry for various

levels of accuracy. "Accuracy" is defined as the difference between the numerical approximation

and a hypothetical continuum-limit K-matrix, which must be inferred from the behavior of the

approximation.

The angular accuracy is roughly independent of the radial properties of the potential, so the

numerical requirements of the polar-angle dependence can be investigated without a detailed model

of the physical potential. The angular momentum quantum number I provides a convenient basis

for calculating the K-matrix, but one which is not a basis of eigenvectors. In an eigenvector basis,

the K-matrix would be diagonal, and the numerical convergence of the various elements would be

unrelated, with the states of higher rotational energy requiring a finer mesh. Here, by contrast, the

error in the numerical approximation is spread over all coupled states. In particular, if one element

dominates the others, a small relative error in that element will imply a large relative error in the

other elements. The convergence of the largest element is found to be excellent, with accuracy

about 10-3 using 29 points in the angular mesh. The convergence of the smaller elements is limited

by this effectively constant bound. Convergence beyond this limit requires vastly larger meshes,



thoughagreatimprovementcanbegainedby theuseof high-order differentiation rules. It is

found that adding rules of fifth order in the mesh spacing requires little additional programming,

and virtually no extra computer time.

2. The Method

The homonuclear diatomic molecule is the simplest system for which non-spherical terms

contribute to the scattering potential, so it will serve as the physical anchor for an otherwise

mathematical study. When the energy of the incident electron is between 1 and 10 electron volts,

the non-spherical structure of the molecule is particularly important. In such a situation we use the

axial symmetry of the molecule to reduce the Schrrdinger equation to a two-dimensional partial

differential equation. We assume for simplicity that the collision does not excite vibrational states

of the molecule. Rotational excitations may be dealt with at the cross-section stage of the

calculation in the usual adiabatic-nuclei manner [1].

The target molecule may be assumed to be oriented in a particular direction inspace, so we

use the axis of symmetry of the molecule as the z-axis of our coordinate system (Figure 1), and

define a modified wave function u which is related to the true wave function • for the projectile by

q_(r, O, q_) = r-lu(r, O) eimO. (1)

The equation for u in atomic units is

32u f 3u 3u ] f m:Z ]

_+ r-'_cotO _ -i- _ +{ p2-2V(r,O) _u

3r2 [ 30 30 J [ r2 sinO J
= O. (2)

where V(r, "O) is the scattering potential, and p is the momentum of the projectile. A finite
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differenceapproximationto thisequationis solvedon ttledomain0 < r < Rmax, 0 < O < x/2. The

outer limit Rmax is chosen to be sufficiently large that the scattered particle is effectively free at that

distance. The range of O has been cut in half to take advantage of the symmetry of the molecule

under reflections in the x-y plane.

The boundary condition at r=-0 requires that u=0. At O=0, there are two possibilities: if m, the

z-component of the orbital angular momentum, is nonzero, then u--0; otherwise 3u/3d=0. At

•O=n/2, the parity of the system dictates either that u=0 or 3u/"30--0. At r=Rm,x, we impose the

requirement that the incoming electron be in a state of well-defined orbital angular momentum, so

u(Rmax, O)=Plm(COS 0). (3)

The parity of the associated Legendre function, (-1)l+m, determines the choice of boundary

condition at O=x/2. Though this parity is conserved by the scattered wave function, the value of l

for the incident wave is not. Outgoing waves therefore contain a superposition of l, 1+_2,/+4, and

so forth.

Once the wave function has been found, information about the scattering is extracted by

matching it to the known asymptotic form

Olin = _ [Au'jl'(pr) + BlrYl'(pr)] Pl'm(COS "0),

I'
(4)

where I and m are the index and order of the Legendre function used in the boundary condition at

large r, andj and y are spherical Bessel functions. The coefficients A and B form matrices on the
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spaceof allowedvaluesof orbitalangularmomentum.

Theorthogonalityof theLegendrefunctionsmaybeusedtoprojectoutaparticularvalueof l'.

When this is done for two different large values of r, the linear independence of the Bessel

functions allows extraction of the unknown coefficients A and B. This process must be done for

each allowed value of l'; then, the whole solution process repeated, allowing I to take on each

permitted value. The result is two matrices describing the trans['ormation of an angular momentum

eigenstate into a scattered wave. In principle, the dimension of the matrices is infinite, but in

practice the finite range of the non-spherical potentials provides a cutoff. For an H2 molecule,

with a projectile energy below 10 eV, values of/less than 5 are all that are required. Hence, the

matrices are at most 3x3. The K-matrix is defined by the equation

0)t_ = _ [jr(pr) + KlrYr(pr)] Prm(cos O), (5)
r

so K = A-IB, and the influence of the artificial imposition of an initial orbital state is removed. The

diagonal elements of K are the tangents of the elastic phase shifts, and the off-diagonal elements

describe the coupling of states of different orbital angular momentum by the potential.

3. The Potentials

The potential energy function V in equation (2) represents the electromagnetic interaction of

the projectile with the target molecule, and is the source of the breaking of spherical symmetry. In

principle, this interaction is highly complicated. A molecule is by no means a static, rigid body in

the presence of an incoming electron, so a potential model is not strictly correct, but the practical

usefulness of potentials in calculations is great enough to excuse the gross simplification of the

scattering problem they imply. The potentials involved in scattering from hydrogen molecules are

approximations to three effects: the static electric moments of the molecule; the polarization of the

molecule by the electric field of the projectile; and the substitution of an electron from the molecule



for theprojectilein theoutgoingstate,knownas"exchange".Toy modelshavebeenadopted

whichmimic to someextenttheradialstructureof thephysicalpotentials,andhaveangular

propertieswhich areexpandablein thelow-orderLegendrepolynomialsof evenparity.

Becausethehydrogenmoleculeiscomposedof identicalatoms,thelowest-ordermultipole

field seenbytheprojectileis thequadrupoleterm

Vq(r, 0)= Q r-3 P2(cos J), (6)

where Q=.49 in atomic units. This form is valid for values of r which are outside the molecule for

all O. At shorter ranges, the quadrupole potential is cut off by the usual exponential term

(1-exp[-(r/a)6]) as a multiplier. The adjustable parameter a is set to I, since no effort is made to fit

experimental data. The static potential inside the molecule is represented by a Yukawa function of

unit range and arbitrary strength, which is adjusted as necessary to give the correct order of

magnitude for the K-matrix.

Polarization of the target is well known to include terms of both spherical and P2 character

[1]. The form used here is

Vp(r, O) = r-4(1-exp[-rr]) [ao + a2P2(cos '0)]/2, (7)

with a0=5.5, and a2=1.4.

The exchange potential is a crude form of the Free Electron Gas model. The basic idea here

is that the electrons in the target may be approximated by a degenerate Fermi gas whose density

varies with position [I]. The exchange potential is proportional to the Fermi momentum at any

point in space, giving

Vx(r) = -(3/2r0 [3r_213(r)] In. (8)



Theelectrondensity13(r)isapproximatedbya simplesum,
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B(r,0) = (4r0-1e-r[l+ 1.3P2(cos0)], (9)

whichhascontoursof constantdensitywhichresemblethoseof thesumof two hydrogenatoms

separatedby .7 angstroms.Theresultingpotentialcanbeapproximatedby alinearcombinationof

Legendrepolynomials,which is

Vx(r,O)= -.8 e-r/3[.97 + .43P2(cosO) + .1 P4(cos O)]. (10)

The "realistic" potential is a sum of these three terms.

The long-range quadrupole potential is the most important term in real scattering problems,

but it does not vanish until a distance of 14 Bohr radii from the molecule's center is reached. This

was determined aposteriori, by searching for a region in which the K-matrix does not depend on

small changes in Rmax. ) Such a long range requires a large number of radial points, and

consequently a long running time for the computer code. Although the convergence properties of

the angular approximation are roughly independent of the quality of the radial approximation, this

independence is only valid when the radial mesh is on the order of magnitude of the mesh which

gives decent radial convergence. Therefore, the quadrupole term is generally omitted from this

work, in the interest of a more efficient use of computer time. The P2 terms in the polarization and

exchange potentials are in any case expected to yield the same requirements on the angular mesh.

4. Numerical Analysis

The usual discrete approximation to equation (2) is obtained by replacing the radial variable with
f

a set of Nr points, and the angle with a set of No points. The wave function therefore becomes a

set of (real) values which solve the equation [2]



hcz [ui+1,j- 2uij + ui.lj ] +

ri-2[ ho-Icot oi (Ui.j+l - Ui,j) + ho'2( ui,j+ 1 - 2ui.j + ui,j-l) ] +

[p2-2Vi.j-'- m2 / ri2sin20j] ui,j =0. (11)

Here, uij=u(ri, 0j), with 0 < i < Nr and 0 <j < No. The spacings between the radial and angular

points are fir and ho, respectively. (The values of hr and ho may in principle depend on i andj.)

Equation (11), together with the boundary conditions, gives a system of (Nf+2)(No+2) coupled

linear equations for the uij, which may be solved by conventional matrix methods [3].

The choice of the points ri and 0j presents an unavoidable conflict of interest. There are

ways to improve the accuracy of a numerical solution of a differential equation by judicious choice

of abscissae, j.'ust as there are ways to improve the numerical quadrature by which the elements of

the K-matrix are projected out of the wave function. Unfortunately, the ways are mutually

inconsistent. Numerical quadrature is optimized by choosing points so that successive errors

alternate in sign, which is the worst possible choice of points for differentiation. Therefore, a

compromise of equally-spaced abscissae will be used, and optimization achieved through

higher-order integration and differentiation rules.

When the Schrrdinger equation is solved on a two-dimensional lattice, the resulting matrix

is block tridiagonal. This property, which makes the matrix easier to decompose into lower and

upper triangular matrices, depends on one of the variables having a simple three-point derivative.

The other may be as complicated as the problem demands. In this work, the radial accuracy is of

secondary interest, so the 0-derivative part of equation (1 li, which is in braces, will be explored

with rules of greater accuracy (Table 25.2 in reference [4]).



For apointin theinteriorof thedomainof approximationof O,labelledby "j", rulesof order

ho 5 are

_)f/0O = (I/D1) {2fj.2- 16fj_l + 16fj+l- 2fj+2},

_92f/_02= (l/D2) {-fj-2 + 16fj.l - 30fj + [6fj+l- 2fj+2 },

9

(12)

where Dl=24ho and D2=12ho 2. (To simplify the formulae, Ui,j has been replaced by fj.) For

points next to the boundary, asymmetrical rules must be used:

_f/_)O = (l/D1) {--6fj.1- 20fj -b 36fj+1 -- 12fj+2 + 2fj+3 };

_2f/_02= (l/D2) { 1 lfj.1- 20fj + 6fj+l + 4fj+2- fj+3 }.

(13)

(14)

(15)

These rules are used for points next to the boundary at 0=0. Next to O=r_/2, the subscript "j+3" is

replaced by "j-3", "j+2" by "j-2" and so forth, and there is an overall minus sign in the fin-st

derivative.

At the boundary, if u=0 is the boundary condition, then it goes directly into the matrix. If

Neumann boundary conditions apply, the process is more involved. First, terms in the

SchrSdinger equation proportional to Of/_90 are dropped. Then, equation (14) is used with j--0 to

-6f.1 - 20t"0+ 36fl - 12f2 + 2f3 = 0 (16)

get the relation

which is solved for f4. This value is then used in equation (15) (with j--0 again), to derive an

expression for O2u/OO2 at J=0 which is accurate to fifth order in ho:

(17)_2f/002 = (1/I32) {-(170/3)f0 - 72fl- 18t"2- (8/3)f3 }.

J
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When Equation (17) is used in place of file second derivative term in (1 I), the result is an

approximation which significantly improves the numerical accuracy, compared to the three-point

rules. As a test, when a spherical potential is assumed, and the K-matrix calculated, the off-

diagonal matrix elements should vanish. In fact, for a given number of O points, they are at most

one fourth of those calculated with the three- point rules, and of order 10-3 when the largest

diagonal element is about 1.

5. Results

Convergence of the K-matrix is determined in two ways. Tile first takes advantage of the

invariance of the K-matrix under time reversal to require that the K-matrix be symmetric. The

second is that the value of an element of the K-matrix change with changes in the number of O

points in a manner which points clearly to an asymptotic limit.

The matrices are not strictly symmetrical. When the scattering potential is spherical, the

wave function should have the angular properties of the large-R boundary condition, all the way to

the origin. This is true only when the boundary condition is l--0. When higher waves are used,

each contains a contaminant of lower I values. This contamination decreases with each step in r

away from the origin, reaching an eventual limit of about .002 times the amplitude of the correct

wave. Therefore, any number less than .002 in the K-matrix is indistinguishable from zero. This

seems to be an artifact of the solution algorithm, reducible only by improving the O-derivative rule.

(When a three-point rule is used, the corresponding limit is .008.)

The second criterion makes an accurate graphical depiction of the convergence difficult.

The convergence of almost aU elements is monotonic, so the choice of a specific limit is arbitrary,

yet it has a great impact on the perceived quality of the convergence. For this reason, the first
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derivativeof Ku'with respectto Nois plottedin Figures2-7.

To bestisolatetheeffectsof variousnon-sphericalpotentials,theK-matricesusedto

producefigures2-7arederivedfrom severalpotentials.First,asphericalYukawapotentialwas

used,thenthesameYukawapotentialmultipliedby theLegendrepolynomialP2(cos_), thenhalf

of each.Thelengthscaleof thepotentialwas3,andits stre0gthwassetto -0.4. Themomentum

of theincomingparticlewas.8,correspondingto akineticenergyof 8.7eV.All these parameters

were chosen to give significant K-matrix elements up to/=2. An exception is the P2 potential in

Figure 5. The/=2 element was very small, so its relative error was extremely large, and not

indicative of the numerical properties of the algorithm. The fourth curve on the graphs is the

"realistic" potential described above, with a Yukawa of unit range in place of the long-range

quadrupole.

Figures 2 and 3 show the slope versus No of the K-matrix element for transitions between

spherical waves. Figure 2 is for a three-point rule, and Figure 3 is for the five-point rules. The

advantage of the five-point rule is most obvious at small numbers of theta points. As the mesh

becomes finer, the relative advantage of the five-point rule diminishes, but it is still a factor of two

better. Figures 4 and 5 are the same, for the D-wave to D-wave reaction.

Figures 6 and 7 are different. They show the difference between the I=0 to 2 matrix

element and the 2 to 0 element, and thus provide a test of time-reversal. The difference is

normalized to the value of Ko2, usually the smaller of the two. In judging the size of the relative

error, it should be borne in mind that there is always a diagonal element of the K-matrix which

dominates this term by an order of magnitude. The uncertainty in this dominant element is the

primary source of this error. In this place, the five-point rule shows its particular virtue. The

five-point rule shows a more symmetrical K-matrix with 11 points in the mesh than the three-point

rule with 30.
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6. Conclusion

The addition of five-point approximations to the angular derivatives requires only minor changes

in the computer code for solving partial differential equations. It preserves the block-tridiagonal

character of the equivalent linear system, so it requires no extra running time, and it yields

significant improvement in the accuracy of the numerical solution.

The chief drawback of the partial-differential-equation method for non-spherical scattering

problems is that the coupling between states makes the relative error in the small elements of the

K-matrix large, since it is a small fraction of a large number. The largest element of the K-matrix

thus creates a "floor", a lower bound on the possible error in the other elements.

The contamination of the wave function by lower partial waves than the input boundary

condition is the largest single source of error. It is an artifact of the u=0 boundary condition at the

origin. The natural tendency of this algorithm is to assume the smoothest possible wave function

near r=-0, and it takes several steps away from the boundary before the large-r boundary condition

can assert its dominance. A more sophisticated treatment of the radial derivatives might well be

rewarded by a reduction of this defect.

Though this work has confined itself to the angular behavior of the wave function, the great

improvements afforded by the higher-order approximations to the derivatives might have

counterparts in the radial direction. This would destroy the tridiagonality of the matrix, but in

applications where the size of the computer's memory is less of a constraint than the cost of

processor time, it may be worthwhile.
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Abstract

A calculation of e-N2 scattering in the vicinity of the 2.4 eV (1-Is) resonance has been

completed. The main element of the calculation is a 15 term vibrational close coupling

expansion, reduced to coupled two-dimensional (2d) partial differential equations (pde's),

and solved using the noniterative pde technique. The potential consists of static, exchange,

and polarization parts; each part has been (previously) derived in a manner appropriate to

its importance in the scattering equation. Results for the absolute total cross section, both

in magnitude and shape of the substructure in the resonance region (1.5< k2<3.0eV), are

in excellent accord with experiment. Angular distributions are also calculated and found

to vary significantly in shape in the immediate vicinity of the center of tile resonance

(2.05<k2<2.15eV), indicating the need for differential measurements at a finer grid in

energy, and therefore, requiring even better energy resolution. Comparison with other

calculations and discussion of some theoretical aspects are also included.
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I. INTRODUCTION

The purpose of this paper is to report a calculation of electron scattering from molec-

ular nitrogen (e-N2) using the noniterative partial differential equation technique. 1 This

calculation is confined to the energy region around the 2.4 eV resonance; it consists of a

15-state vibrational close coupling expansion for the resonant (II9) partial wave combined

with fixed-(plus adiabatic-)nuclei amplitudes for the other (contributing) partial waves.

The underlying method is the hybrid theory. 2 We shall concentrate on the angular distri-

butions for the lower vibrational states (v = 0, 1, 2), showing that their shapes change very

rapidly from one energy to the next as one traverses the energy region in the center of

the resonance. Thus, despite the fact that several differential scattering experiments have

been reported (to be discussed below), they do not have the energy resolution, nor have

they attempted to explore the variation in the angular distributions in this narrow energy

region in detail. It is one of our aims to motivate such experimental investigations.

Several important developments in our calculations have been made since the intro-

duction of the hybrid theory 2, which we have reported piecemeal since then. Briefly, the

most salient of them are: the noniterative technique itself 1, the reduction of the scattering

equation to 2d form, which was first outlined in Ref. 3, in addition to which--it turns out--

the 2d technique could also be applied to the derivation of the polarization potential 4, as

well as to a method for exactly including exchange in the static-exchange approximation. 5

And finally, the direct (i.e. non-exchange) static potential could be calculated _ using a

much better (MCSCF) approximation of the N2 ground state than the SCF approxima-

Lion, used originally. 2-s Some interim results using a 10 state vibrational expansion were

reported in Ref. 7.

II. THEORETICAL ASPECTS

We start with an antisymmetrized ansatz for the total wavefunction of the e-N2 system
2,7.

15

k0(m)---- Z(-1)P'F(m)(xi;R)d_N2(x(i);I_) (2.1)
i=1

Here xi are the coordinates (space and spin) of the i t_ electron and x (i) is the collection of

coordinates of the remaining (fourteen) electrons. The factor (-1)p, is the parity of a cyclic

permutation (/5i) of the sequence 1,2, ..., 15, thus making q(") completely antisymmetric.

We first summarize the analysis, mostly of Ref. 5, whereby the basic integro-pde is



derived. (Note, howeverthat we arehere usingRydberg units asopposedto atomic units,
used in Refs. [5,6]). Insertion of Eq. 2.1 into the SchrSdingerequation, and premulti-
plication by the target ground state, _N2, yields the static exchangeapproximation. We
first consider the ground state (E+) to be representedby a singledeterminant (i.e. SCF
approximation):

2 2
_N2 det(lag2a 9 2 2 = 2 2= 1a,,2cr,,3a,,17r_,,17ry,,; E + ) (2.2)

Labelling the different orbitals ¢_ [a : lag,..-,17ry,,], we recognize that each ¢_ is an

explicit function of the coordinates of a single electron and an implicit function of the

internuclear separation R:

¢. = ¢.(_1,"" ;R)(,_(spin) (2.3)

When one includes the R dependence of ¢_ and F (m), one derives 7 a 3d pde for F(m):

7

[-V 2 + H,,ia(R) + V(_'; R) - E,c] F(")(_'; R) = 2 Z W(m)(_'; R)¢_(r. R),
c_--=l

(2.4)

where V(?-'; R) is (to begin with) the static potential between the scattered electron and

the target (N2):

vs,o,ic( ';n) = (eN2tV -mo l N=)

and W,_ are the (static) exchange kernels

w(m)(_'; R) = dar ' ¢;(_"; R) i_._- _.,jF(m)(_'; R)

The energy appearing in Eqs. 2.4 and 2.5 is

(2.5)

(2.6)

= + %, (2.7)

and H,,ib(R) is the vibrational part of the target Hamiltonian from whose internuclear

potential, vibrational wave functions (X,) and energies (%) are evaluated. (In this calcula-

tion, the latter are obtained numerically from the MCSCF potential energy curve reported

in Ref. 6.

For the static potential (2.5), we use an MCSCF approximation 6 of q)N2. An MCSCF

wave function is a sum of determinants, whereas the right hand side (i.e. the exchange

part) of the scattering Eq. 2.4 assumes that q'N_ is a single determinant (i.e. SCF

approximation). Thus (2.4) constitutes an admittedly unbalanced approximation, which



nevertheless seemed well justified_J because (a) the exchange terms usually have a quanti-

tatively smaller effect than the direct terms, and (b) when written as in (2.4), the exchange

terms can be rigorously reduced to a coupled set of ordinary (i.e. non-integral) pde's. 6 This

comes about by expanding F (r') and W (m) in vibrational states X_ of N2

Nu

is----0

No (2.8)
w_m)(_;R) = _ W_(_,°)(_X_(n)

v=0

and, using the well known property of tile Coulomb potential as the Grecn's function of

the kinetic energy,

1

V2(IF - F.,I ) = -4_5(F' - r-'), (2.9)

allows the scattering equation (2.4) to be reduced to coupled, but nonintegral pde'sT:

[v: + k_v]F_(,-)(_= _ Vw,(Or_,m)(o_ _ _,(_W'_, )(3 ,
v_=O cr=l

No (2.10)
V2W("_)(_ =-4_- E '_(°')(_F_('m)(_""F V Vl

v*=0

The double indexed quantities in (2.10) are vibrational matrix elements of the unsub-

scripted quantities. Thus the matrix elements in Eqs. 2.10 are given by the following
expressions:

v_,(_ = <x4R)lv(_;R)lxv,(R)>,
(_,) -.

¢_,'(0 = <X,,(Tt)lC,(r;R)lXv,(t¢)),

No (2.11)

W("<O (r-') E (<_) -*' 2 F(m)(_,)).= (¢_,(_ )1 '1_'_,=o I_'- _

Eqs. 2.10 can be further reduced to 2d pde's by exploiting the cylindrical symmetry of the

various functions. As derived in Ref. 5, they take the form

[A(m)+ k:o]rAm)(z)= _ V._,(z ')gr)(z)-
_t_ 0

N_

2 E l(")_z_ _(")' 'A(,,_- m°)w!,,,,O)(z)= --- _'vv, t-)Jv, tz) •
vt__O

_ _ _(_)rz_w(,,,,_)_ ,]

1E %,_'t-) ., tz)jr
ot=l

(2.12)



here z = (r, 8) and A(rn) is the 2d Laplacian

02 1102 10 O m 2A(m) - + +  inO OO (2.13)

As stated above V,,_, should be derived from the static potential seen by the scattered

electron, given by Eq. 2.5. We have shown _ that the use of an MCSCF (I)N2 in (2.14)

leads to a slightly less attractive potential than one obtained from an SCF approximation.

That result is in qualitative accord with that found by Rumble et al. s Very recently,

however, Meyer et al. 9 have carefully examined the Hg resonance in tile static exchange

approximation and have found that the resonance, using an MCSCF ground state, when the

consistent exchange terms are included, corresponds to a slightly more attractive effect

than the corresponding consistent exchange approximation with an SCF ground state.

Their conclusion (which we find quite surprising, but do not qnestion) is that the use of

SCF orbitals for exchange in Eqs. 2.10 and 2.11 is stffficiently inconsistent with the use of

an MCSCF wave function in calculating the direct term, that it gives the opposite effect

from what is obtained by using the MCSCF wavefunction. 9

Nevertheless, with regard to our present calculation, we believe this effect is included

by the way polarization has been incorporated. To our static potential, we add a polar-

ization potential, as described in Ref. 6:

where

R) R) + Vpot(r. (2.14)

Vpot(F;R) = (1-e -(r/r°)') Vp(o°T)(_';R) (2.15)

v(OT) is calculated from a quasi-ab initio polarized orbital derivation of the polarization

potential 4, but, as seen in (2.15), the latter is diminished in magnitude by a tuning factor,

(1 - exp[(r/ro)]2), in which r0 was adjusted to give the Hg resonance at the correct (i.e.

experimental) energy.

We found specifically in Ref. 6 that a value of r0 = 2.430 was required when using

V,t_t_(MCSCF), whereas r0 = 2.934 was required for an SCF wavefunction. (There is

an unfortunate typographical error in Ref. 6, which read r0 = 2.394.) What this implies,

in agreement with Meyer et al. 9, is that although (symbolically)

( vstatic + Vexch)MCSCF < (Vstatic + Vexch)sCF <( O, (2.16)
because

(Vpol)MCSCF _ (Vpol)sc F , (2.17)



it is perfectly possible that

+ vetch + Ypot)McscF (v.,o.c + v,,c,, + Ypot)scF, (2.18)

[To repeat, the above equations culminating in Eq. 2.18 are intended as a measure of "size"

in an average sense; in detail, both the r and R dependence of each side will be noticeably

different from the other. We expect therefore that the left hand side, which derives from

the better (MCSCF) wave function, does represent a considerable improvement, and that

is what is used here.]

Thus, from the pragmatic point of view of this calculation, we consider the criticism

of Ref. 9 to have been overcome; in fact, we believe that the results we shall present are,

in the region of the center of the resonance (1.6 < k 2 < 3eV and v <_ 2), the most accurate

that have thus far been calculated.

Moreover, the conclusion of Ref. 9 notwithstanding, it is completely possible that

if one had included the effect of static polarization, exchange, and correlation simultane-

ously, (part of such effects would be described by the exchange-polarization terms in a full

polarized orbital treatment 1°, for example), and if one had then isolated the piece labelled

V**atic + V,_ch separately, then it might have led to the result of Weatherford et al. 6, that

the MCSCF result would be less attractive than the corresponding SCF result [i.e. the

reverse of (2.16)].

III. RESULTS AND COMPARISONS

To the one resonant partial wave (IIg), we add the four most important non-resonant

partial waves (lEg,1 E,, 1 II,, 1 Ag), calculated in the fixed-plus adiabatic-nuclei approxi-

mations, as discussed in Ref. 6. Let us first show and discuss the total cross section aT

(the sum of all energetically allowed vibrational channels, summed and averaged over ro-

tational states in the usual way). The resonance with its famous substructure 11, is usually

compared, as it is here, with the experimental result of Kennerly. 12 The theoretical curves

shown are our previous 10 state result 7 (dashed curve), our present 15 state result (solid

curve), compared to experiment and the Schwinger multichannel calculation of Huo et
al.13,14

With reference to our calculations, the comparison of the 10 and 15 state results gives

a good idea of the convergence of the close coupling expansions: we would say that our

calculations are well converged to just beyond the first resonance (k 2 < 1.95eV), reasonbly

well converged to just beyond the second (_ 2.2eV), and approximately converged to

,_ 2.5eV. Of particular note, therefore, is the fact that ours is the only calculation which

describes the magnitude of the first peak (aT _ 27-_12 at k 2 = 1.95eV) and gives the ratio of



thefirst two peaksaccurately. The calculation of Huo et al.14is almost assatisfactory, while
their adjoining paper13givesthe whole sequenceof vibrational excitation crosssectionsin
remarkableaccord with experiment.15

The ability of such theories as in Refs. 13 and 14 to achieve such an elaborate

overview of the entire resonancesubstructure goesback to the physical ideasunderlying
the boomerangmodel (cf. Ref. 17), which havebeengiven their most rigorousjustification
in the R-matrix theory and calculations of Schneider,LeDournetfl',and VoKyLan} s More
discussionof thesetheories will be included in the latter parts of this paper.

In this paper, we shall concentrateon angular distributions. In Fig. 2, we show the

elastic differential crosssectionat 1.50eV, just below the onsetof the IIg resonance.Also
shown arevarious other theoretical2.14,19and experimental2°-22results. Both similarities

and differencesaxeevident. The results continue into the heart of the resonanceregion
(k2 _ 2.1eV), in Figs. 3 and 4. We have divided those results into two parts: in Fig.
3, we show our present results at three energiessurrounding 2.10 eV; one seeshow sig-
nificantly the shapevaries over 0.1 eV. This is particularly relevant to the fact that the

latest experiment22only claims an energyuncertainty of just that amount. Nevertheless,
the discrepancy between all these results and the original hybrid theory calculation2 is
clear. In Fig. 4, the sameexperimental information is comparedto the presentcalculation
and that of Huo et al.TM at 2.10 eV. Here the similarity of the calculated results, both of

which provide absolute values, is the most striking feature. It should be noted that an

SCF target representation was used in Ref. 14. The agreement between theories suggests

that the recent experiment 22 is dominated by the particular energy in the composite beam

which gives the dominant cross section at a particular angle.

The comparison of experiment and theory at 3.0 eV is shown in Fig. 5. The similarity

of the recently calculated results continues, but -- referring back to Fig. 1 -- we emphasize

that at 3 eV, the energy is definitely pressing the outer edge of reliability of the present

calculation. The other interesting feature of the latest experiment 22, noted there as well, is

that the absolute magnitude in the directions t_ < 110 ° favors the original hybrid result}

In the next three figures (6,7,8), we show differential cross sections in the excitation

transition to the first vibrational state. At the lowest energy (1.50 eV), our present calcu-

lation (Fig. 6) is definitely favored by the experiment of Brenna_ et al}2, whereas, in the

vicinity of the dominant peak (Fig. 7), that is only true in the middle of the angular range.

Note that a different set of experimental results from an Australian group has also been

included. 23 At the highest energy, 3 eV, the graph also includes results of an R-matrix

calculation 24 and yet another experiment. 25 Here the similarity of the present results with

those of the R-matrix calculation is the most notable feature, particulary at middle angles,

where they agree best with the experimental results of Ref. 23.

Finally we show in Fig. 9, the angular distribution associated with the excitation of the



second vibrational state in the vicinity of the dominant peak. Here the two experimental

results 22'23 are in agreement with each other to within their experimental errors, and they

agree best with our present result at the experimental energy 2.10 eV, rather than at its

fringes (2.05, 2.15 eV).

IV. DISCUSSION

This completes the presentation of the results of this calculation. (More results are

available upon request.) Although the method (the hybrid theory) is ab initio in principle,

it contains here one phenomenological parameter, the polarization cut-off r0 [cf. Eq. 2.15].

The main practical purpose for doing this is to provide the best cross sections for (several

space) applications. It will be recalled that our (hybrid) theory was developed in the

context of SAR arcs. 2 The numerical results of that calculation were collected as a NASA

document. 26 The present (more accurate) cross sections are intended for the understanding

of secondary electron flux in the lower F region of the ionosphere. The specific question

concerns whether or not there is a dip in the electron distribution function. 27 Relevant

ionospheric calculations are now ongoing at Goddard Space Flight Center 28, using our

cross sections and those of others, principally Huo et al.13,14

From a more fundamental point of view, the present results are intended to be a more

definitive comparison with experiment in the resonance region, particularly with angular

distributions. As we have seen from the comparisons in the previous section, there is still

insufficient agreement among experiments themselves to provide a definitive check at this

time. In addition, future experiments will require an even finer energy resolution, at a

finer energy grid, to be compelling in this regard. This having been said, it is important

to acknowledge that great progress in experimental angular distributions, culminating in

the recent work of the Australian group22, 23, has already been made.

With regard to calculational methodology, specifically hybrid vs. R-matrix and/or

other L 2 basis set theories, in addition to what was said above and elsewhere 29, it is clear

that the latter are capable of giving the greater overall accuracy at the present time, as is

exemplified by the results of Refs. (13,14,18). (In further detail, for example, the R-matrix

theory shows that the IIg resonance is dominated by short range correlations rather than

the long range polarizability.) However, if insmCficient correlation is included, the R-matrix

method and L 2 methods in general, can yield noticeable inaccuracy (cf. Ref. 30, for

example).

Furthermore, the basic tenet of the hybrid theory is common to both approaches;2, _9

it is the fact that if the interaction time of the resonance is comparable to vibrational time

scales of the target molecule, but short compared to rotation time scales, then in one way

7



or another, a dynamical treatment of the N+ 1 electron system is required. That treatment

can be either a dynamical coupling of the incident particle with the vibrational motion of

the target, or a recalculation of the Born-Oppenheimer problem of the (N + 1)-electron

system, followed by a calculation of the vibrational spectrum in the (necessarily complex)

potential energy well of tile compound system.

The drawback of the present methodology is due to the slow convergence of the vi-

brational close coupling expansion. In principle, that can be overcome by going to a 3d

approach in which the internuclear separation (R) becomes the third dynamical variable.

Such a theory has already been outlined, 31 and the non-iterative pde method 1 has been

generalized to three and higher dimensional equations and applied to a solvable model, a2

The implementation of this program is already in progress, however, its completion will

not be easy: in particular, the detailed substructure that such calculations reveal, will

depend critically on the range and mesh size with which the R variable can be covered.

Perhaps the most exciting potential application of the 3d pde technique, also dis-

cussed in Ref. 32, is the fact that it can be applied to scattering (in principle) from

arbitrary polyatomics in the fixed-nuclei approximation, aa Augmented by the adiabatic-

nuclei approximation, 3a such a method would be an invaluable tool in studying scattering

processes in galactic environments, such as the Orion nebula, where it is known that exotic

molecules can form (el. Ref. 34, for example) which may not be amenable to laboratory

experimentation, so that theoretical calculation provides the only reasonable alternative.
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Figure Captions
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